Page 22 - 881414_FIZYKA_podrecznik_kl_8_PP_fiipbook
P. 22
Więcej na temat
Niepewność pomiarowa – inny przypadek
Wiesz już, że każdy pomiar jest obarczony niepewnością pomiarową. Jeśli wyniki pomiarów różnią się od sie-
bie o więcej niż wynosi podwójna najmniejsza działka przyrządu pomiarowego, to wówczas możemy przyjąć, że
( max)
niepewność pomiarowa (∆x) (czyt. delta x) – jest równa połowie różnicy pomiędzy największą x i najmniejszą
( min)
wartością pomiaru x .
x – x
∆x = max 2 min
Zauważ, że dla dwóch wyników różniących się od siebie o podwójną najmniejszą działkę przyrządu otrzymamy
z podanego wzoru, że ∆x równa jest dokładności przyrządu.
Omówimy teraz przykład, w którym dwoje uczniów za pomocą linijek
dokonało pomiaru długości ołówka i uzyskało wyniki: 15,8 cm i 15,9 cm.
Przeanalizujemy prawdopodobne źródła różnic w wynikach pomiarów:
• przyłożenie początku skali przyrządu do początku odcinka mogło być
mniej lub bardziej dokładne,
• koniec mierzonego odcinka mógł nie pokrywać się z tą samą działką na li-
nijkach,
• oko podczas pomiaru mogło nie być ustawione prostopadle do danego
miejsca przymiaru (tzw. błąd paralaksy),
• linijki mogły być niejednakowo wyskalowane.
Jak więc widać, na dokładność pomiaru mają wpływ głównie:
• sposób dokonania pomiaru (właściwe ustawienie przyrządu, obserwacja
i odczyt),
• różnice w dokładności przyrządów pomiarowych.
Pomiar wielokrotny, średnia arytmetyczna
Czy wiesz, pomiar którego z uczniów był bliższy rzeczywistej długości ołówka?
Aby uzyskać wartość najbliższą rzeczywistej, często dokonujemy wielo-
krotnego pomiaru określonej wielkości, a następnie obliczamy średnią aryt-
metyczną.
Średnią arytmetyczną obliczamy, dodając wszystkie wyniki
i dzieląc otrzymaną sumę przez liczbę pomiarów.
Uczeń zmierzył wysokość latarki za x + x + ... + x
pomocą linijki w sposób pokazany na x = 1 2 n
rysunku. Czy pomiar został wykonany średnia n
poprawnie?
20