Page 146 - kl 6 cz 2
P. 146
7.3 Ułamki
Ułamek to część całości. Część całości opisana ułamkiem
5
8
Ułamek można traktować jako iloraz liczb Ułamek jako iloraz
naturalnych. 8
8 : 9 =
9
Skracanie ułamka polega na podzieleniu Skracanie i rozszerzanie ułamka
licznika i mianownika przez tę samą liczbę 35 : 7 5 4 · 6 24
(różną od 0 i 1). 56 : 7 = 9 · 6 = 54
8
Rozszerzanie ułamka polega na pomnożeniu
licznika i mianownika przez tę samą liczbę
(różną od 0 i 1).
Sprowadzanie ułamków do wspólnego Sprowadzanie ułamków
mianownika polega na takim rozszerzeniu do wspólnego mianownika
dwóch (lub więcej) ułamków, aby miały one taki 5 · 2 10 3 · 3 9
sam mianownik. 6 = 12 4 = 12
· 2 · 3
Ułamki na osi liczbowej
1
2
1
3
–1 –1 – – – 0 1 2 3 1 1 1
4
4
4
4
4
4
4
4
Porównywanie ułamków Porównywanie ułamków
Jeżeli dwa ułamki mają jednakowe mianowniki, 7 > 4
to ten ułamek jest większy, który ma większy 9 9
licznik. 2 < 2
Jeżeli dwa ułamki mają jednakowe liczniki, 15 4 7 30 28
6
to ten ułamek jest większy, który ma mniejszy 7 > , ponieważ 35 > 35
5
mianownik.
Jeżeli dwa ułamki mają różne liczniki i różne
mianowniki, to aby je porównać, należy
sprowadzić je do wspólnego mianownika lub
wspólnego licznika.
144