Page 31 - kl 7 cz 2
P. 31
Przykład 3
Korzystając z twierdzenia Pitagorasa, wyznaczmy długość przekątnej prostokąta o bokach 10 cm i 12 cm.
a = 10 cm
a d b = 12 cm
b
a + b = d 2 Przekątna dzieli prostokąt na dwa przystające trójkąty prostokątne.
2
2
Skorzystajmy z twierdzenia Pitagorasa.
10 + 12 = d 2 Podstawmy w miejsce liter odpowiednie liczby i wykonajmy obliczenia.
2
2
100 + 144 = d 2
244 = d 2
d = 244
d = 4 · 61
d = 2 61
Przekątna prostokąta ma 2 61 cm.
4. Oblicz długość przekątnej prostokąta, którego boki mają podane długości.
a) 5 cm i 12 cm b) 6 dm i 9 dm
Przykład 4
Oblicz długość przekątnej kwadratu o boku a = 7 cm.
Przekątna dzieli kwadrat na dwa przystające trójkąty prostokątne
a d równoramienne. Oznaczmy przekątną kwadratu literą d.
Obliczmy jej długość, korzystając z twierdzenia Pitagorasa.
a
a + a = d 2
2
2
7 + 7 = d 2
2
2
49 + 49 = d 2
d = 2 · 49 Korzystamy z własności pierwiastków.
d = 7 2
Przekątna kwadratu ma 7 2 cm.
Jeżeli bok kwadratu ma długość a, to długość przekątnej d tego kwadratu określona jest wzorem:
d = a 2
5. Oblicz długość przekątnej kwadratu, którego bok ma długość:
a) 15 cm, b) 2 dm.
29