Page 136 - kl 8 cz 1
P. 136

Przykład 2
          Obliczmy, ile cm  kolorowego papieru potrzebował Jurek na wykonanie siatki ostrosłupa prawidłowego
                         2
          czworokątnego, wiedząc, że krawędź podstawy tego ostrosłupa jest równa 16 cm, a wysokość ostrosłupa ma 6 cm.


          Sporządźmy rysunek pomocniczy. Oznaczmy:
          a – krawędź podstawy ostrosłupa (w cm), a > 0
          H – wysokość ostrosłupa (w cm), H > 0                                                 H

          Aby dowiedzieć się, ile cm  papieru potrzebował Jurek na sporządzenie siatki
                                  2
          ostrosłupa, musimy obliczyć pole powierzchni całkowitej ostrosłupa.
                                                                                                      a
          P  = P  + 4 · P , gdzie:
                p
                       s
           c
          P  – pole powierzchni całkowitej (w cm )
                                              2
           c
          P  – pole podstawy (w cm )
                                  2
           p
          P  – pole powierzchni ściany bocznej (w cm )
                                                  2
           s
          Obliczamy pole podstawy, czyli pole kwadratu.
          P  = a 2
           p
          P  = 16 2
           p
          P  = 256
           p
          Aby obliczyć pole powierzchni ściany bocznej, obliczymy najpierw wysokość
          ściany bocznej. Zauważamy, że – łącząc spodek wysokości ostrosłupa ze
          spodkiem wysokości ściany bocznej – otrzymujemy trójkąt prostokątny,            x     H
          którego przeciwprostokątną jest wysokość ściany bocznej. Obliczamy tę
          wysokość, korzystając z twierdzenia Pitagorasa.
          x – wysokość ściany bocznej (w cm)                                                          a
          x  = H  + ( a) 2
                    1
                2
           2
          x  = 6  + 8 2 2
               2
           2
          x  = 100                                                                          x        H
           2
          x = 10
          Obliczamy pole powierzchni ściany bocznej.                                         1
               1
          P  =   · 16 · 10                                                                   2  a
           s
               2
          P  = 80
           s
          Obliczamy pole powierzchni całkowitej.
          P  = 256 + 4 · 80
           c
          P  = 576
           c
          Jurek potrzebował 576 cm  kolorowego papieru na sporządzenie siatki ostrosłupa.
                                  2



                                            3.   Namiot ma kształt ostrosłupa prawidłowego czworokątnego. Każda
                                                 ściana boczna ma pole 3 m , a pole podstawy jest równe 4 m . Oblicz
                                                                          2
                                                                                                         2
                                                 wysokość namiotu.
                                      134
   131   132   133   134   135   136   137   138   139   140   141